

Year 12 Mathematics Specialist Units 3, 4 Test 2 2020

Section 2 Calculator Assumed (Scientific only) 3D Vectors

STUDENT'S NAME

DATE: Friday 8 April

TIME: 50 minutes

MARKS: 41

INSTRUCTIONS:

Standard Items: Special Items:

Pens, pencils, drawing templates, eraser Three calculators (**scientific only**), notes on one side of a single A4 page (these notes to be handed in with this assessment)

Questions or parts of questions worth more than 2 marks require working to be shown to receive full marks.

1. (5 marks)

Determine the value(s) of λ if the angle between the vectors $\begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 0 \\ \lambda \end{pmatrix}$ is $\frac{\pi}{4}$.

2. (12 marks)

Given the two lines
$$L_1: \quad r = \begin{pmatrix} 0 \\ -1 \\ 1 \end{pmatrix} + \lambda \begin{pmatrix} 1 \\ 2 \\ 2 \end{pmatrix}$$
 and $L_2: \quad r = \begin{pmatrix} -1 \\ -5 \\ 0 \end{pmatrix} + \mu \begin{pmatrix} 2 \\ 6 \\ 3 \end{pmatrix}$

(a) Show that the lines intersect at a point *P* and determine the coordinates of *P*. [4]

(b) Determine, in the form ax + by + cz = d, the equation of the plane containing both the lines L_1 and L_2 . [4]

(c) Given that Q_1 and Q_2 are two points on L_1 such that $|PQ_1| = |PQ_2| = 6$, determine the coordinates of Q_1 and Q_2 . [4]

3. (4 marks)

Two particles *A* and *B* have position vectors:

$$\underline{r}(t) = (20+10t)\underline{i} + 10\underline{t}\underline{j} + (-1.4+0.3t)\underline{k} \text{ and}$$
$$\underline{r}(t) = (30+8t)\underline{i} + (-90+10t)\underline{j} + (0.9+0.2t)\underline{k}$$

Determine whether the particles collide or their paths cross. State the coordinates of this position.

4. (9 marks)

A plane Π contains two lines:

$$\underline{r} = \underline{i} - \underline{j} + 2\underline{k} + \lambda \left(2\underline{i} + 3\underline{j} - \underline{k} \right) \text{ and } \underline{r} = \underline{i} - \underline{j} + 2\underline{k} + \mu \left(-\underline{i} + \underline{j} + 3\underline{k} \right)$$

(a) Write down a vector equation of the plane Π in the form $r = a + \alpha b + \beta c$ [1]

(b) The point A with position vector $\begin{pmatrix} 8 \\ 2 \\ c \end{pmatrix}$ lies on the plane. Determine the value of the constant c. [3]

(c) The vector $a\underline{i} + b\underline{j} + \underline{k}$ is perpendicular to the plane. Determine the values of a and b. [3]

(d) State the equation of Π in the form $\underline{r} \cdot \underline{n} = k$ [2]

The point *A* has coordinates (2,0,-1) and the plane Π has the equation $r \cdot \begin{pmatrix} 1 \\ 2 \\ -2 \end{pmatrix} = 8$. The line

through A parallel to the line $r = \begin{pmatrix} 0 \\ 0 \\ -1 \end{pmatrix} + \beta \begin{pmatrix} -2 \\ 1 \\ 2 \end{pmatrix}$ meets Π at B and the perpendicular from

A to Π meets Π in the point C. [Hint: draw a diagram]

(a) Determine the vector equation of the line through A parallel to the given line, hence determine the coordinates of B. [3]

(b) Determine the vector equation of the perpendicular from A to Π , hence show that the coordinates of C are $\left(\frac{22}{9}, \frac{8}{9}, \frac{-17}{9}\right)$. [3]

(c) Show that the length of AC is $\frac{4}{3}$.

(d) Determine the value of $sin(\angle ABC)$.

[2]

[3]